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1. ABSTRACT 
 

This paper details the work developed by myself at Centro de Medicina 

Laboratorial Germano de Sousa (CMLGS) in the genetics department, related to 

the fields of metagenomics and microbiota. The main goal was to develop the 

bioinformatics pipeline component of a new clinical test focused on the gut 

microbiota and obesity. This clinical test will help a doctor/nutricionist 

in finding actionable paths of diet for possible obesity treatments.  
 

The work developed was divided between researching, testing and implementing 

bioinformatics solutions as well as understanding the metrics and terms 

necessary to reach the main goal. 

 

As a result CMLGS now has a market-ready clinical microbiome test. It is 

called GUTHEALTH. 

KEYWORDS 

Bacteria, Microbiome, Microbiota, 16S rRNA, Diet, Obesity 
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2. INTRODUCTION 

2.1 COMPANY INFORMATION 
 
The Centro de Medicina Laboratorial Germano de Sousa group specializes in 

laboratory medicine and has more than 40 years of experience in clinical 

analysis. It currently comprises more than 450 collection places and 15 

laboratories across Portugal and it performs over 11 million laboratory tests 

per year. Its headquarters and the department of Genetics are located in 

Telheiras where the investigation and production of this test took place. 

 

The department of Genetics answers the growing need in the areas of Genetic 

and Genomic related diagnoses. It comprises of areas Cytogenetics/Molecular 

Cytogenetics, Molecular Genetics and Genetic Biochemistry, presenting a 

complete offer of genetic tests for the most diverse areas of Clinical 

specialty. 

 

Currently the goal of creating “Lifestyle” health products such as the one 

presented in this paper is one of the priorities of the CMLGS group. A brand 

called Lifestyle Genomics was created to accommodate such goal. 

 

To provide scientific support in the context of microbiome analysis, 

partnership between the CMLGS group and the NOVA Medical School – Faculty of 

Medical Sciences of the Nova University of Lisbon. Namely the list of 

Genus/Species of bacteria to be analyzed and included and the conclusions 

related to obesity, were the responsibility of the research group led by 

Doutora Conceição Calhau. 
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2.2 PROJECT OBJECTIVES 
 

The main objective was to create a marketable sequencing-based clinical 

microbiome test related to obesity without the need of human intervention in 

the processes of analysis and reporting. The project was divided into 4 

phases: 
 

Phase 1 included: 1) Finding in the data the right bacteria that would be 

identified with the used Next Generation Sequencing (NGS) methods; 2) 

Detecting actionable bacteria throught diet; 3) Implementing the right 

metrics that could assist health professionals in recommending healthier 

diets to the patients; 4) Creating a database of taxonomic sources that would 

able to properly identify bacteria present in the patient’s with our 

microbiome test. 
 

Phase 2 included: 1) Finding publicly available datasets that would serve as 

populational references; 2) To create a pipeline that would able to extract 

metrics from the compiled reference samples. 
 

Phase 3 was devoted to further develop the software and metagenomic pipelines 

available. This included: 1) Creating our own pipeline that to the metrics 

and charts to be used; 2) Designing the test itself (i.e,  how it would be 

presented to our customers) and finally 3) Creating the pipeline that would 

analyse the data and produce the report automatically without human 

intervention and creating the PDF report. 
 

Phase 4 was related to finding the right metrics and statistic tests that 

would allow for sample profiling. We needed to identify whether a sample 

more closely resembled an obese gut microbiota or a normal gut microbiota. 

--- 
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3. FUNDAMENTAL THEORY 

3.1 MICROBIOTA AND THE MICROBIOME 
 

The terms Microbiota and Microbiome were often interchangebly used. While 
the core concept is similar, microbiota and microbiome are fundamentaly 
different definitions[1]. 
 
A microbiota is an ecological community of apathogenic (commensal and 
symbiotic) and pathogenic microorganisms found in and on all multicellular 
organisms studied to dat. A microbiota includes bacteria, archaea, protists, 
fungi and viruses. It has been found to be a factor in immune response and 
hormonal and metabolic equilibrium of their host[2]. 
 
A microbiome as established by [1], refers to the entire habitat, including 
the microorganisms(bacteria, archaea, lower and higher eukaryotes, and 
viruses), their genomes (i.e., genes), and the surrounding environmental 
conditions. Humans, plants, and other animals all have microbiomes; these 
can be generalized to their entire organism, or broken down into specific 
microbiomes for different locations on them. 
 
Microbiota are specific to each organism and the diversity in microbiomes 
between individuals is huge, and even within a person there can be extensive 
variation in their microbiome makeup. For humans, there are a number of 
specific and separate microbiomes present. From skin to lungs to the 
gastrointestinal tract, all of these specific microbiomes make up a unique 
microbiome for each human. 
 
Each individual has a unique microbial composition that is influenced by the 
types of bacteria acquired through maternal vertical transmission, genetic 
composition of the individual, diet, use of medications, intestinal 
infections, stress and day-to-day interactions. 
 

 
--- 
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3.2 WHY IS THE MICROBIOTA IMPORTANT? 
 

Trillions of microbes exist inside an individual’s intestines and on his 

skin. A study[3] from 2018 extrapolated that there are more bacterial cells 

in your body than human cells. There are roughly 40 trillion bacterial cells 

in one’s and only 30 trillion human cells. Combined, these microbes may weigh 

as much as 1–2 kg, which is roughly the weight of the brain. Together, they 

function as an extra organ in our bodies and play a role in an individual’s 

health[4]. 

 

Microbes begin to affect our bodies the moment we are born as we first 

exposed to them when we pass through our mother's birth canal. But our 

knowledge of this subject is expanding as new evidence suggests that babies 

may come in contact with some microbes while inside the womb[5].  

 

As we grow, our gut microbiota begins to diversify. Higher microbiota 

diversity is considered good for one’s health[6]. 

 

Some examples of how the microbiota affects our bodies include: 

 

o Some of the bacteria that first begin to grow inside babies' 

intestines are called Lactobacilli. They can degrade lactose and use 

challenging to digest substrates such as milk glycans[7]. 

 

o Certain bacteria digest fiber, producing short-chain fatty 

acids[7], which are important for gut health. Fiber may help prevent 

weight gain, diabetes, heart disease and the risk of cancer[8] [9]. 

 

o The gut microbiota also helps in shaping how our immune system 

works[10]. By interacting with immune cells, the gut microbiome can affect 

how our body responds to infection. 
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o The gut microbiota may also affect the central nervous system[11], 

which controls brain function and this relationship has been linked to 

Autism[12]. 

 
In summary, the data gathered so far is pointing to the major importance of 

gut microbiota for human health. Thus understanding the composition, the 

fluctuations associated with health and disease and how to manipulate the 

gut microbiota is becoming a main goal in human health. 

 

This serves as motivation as to why we need to create microbiota related 

clinical tests. These need to able to characterize microbiota complex 

relationships with the host. This is why a test such as GUTHEALTH is necessary 

and the reason behind its development. 

 

--- 

3.2.1 HARNESSING THE POWER OF A HEALTHY MICROBIOTA 
 
Fecal Matter Transplant (FMT) is an innovative investigational treatment 

that has been used to resolve infections caused by recurrent C. difficile 

that does not respond to antibiotics. During an FMT, a fecal preparation 

from healthy stool donor is transplanted into the colon of the patient and 

works by repopulating the patient’s microbiota with diverse microorganisms, 

that competitively exclude C. Difficile and restore the symbiotic 

relationship of the microbiota[7]. 

 

However this treatment has inherent risks. For example if the donor carries 

within its microbiota pathogenic and resistant bacteria and without proper 

screening, the transplant is made. Its effects can be deadly as shown by the 

medical case below: 

 

A 73 year old patient, participating in a clinical trial involving fecal 

transplants, died after developing sepsis due the presence of an antibiotic-
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resistant strain of E. Coli in his blood. Other participants developed 

similar symptoms but their infection responded to the antibiotics while this 

particular patient did not[13].  

 

Following this episode FDA implemented microbiome analysis for multidrug-

resistant organisms in all FMT procedures. 

 

FMT shows that manipulation of the microbiota can be a viable treatment 

option. This episode emphasizes the need for reliable microbiota clinical 

tests such as GUTHEALTH. 

 

 

--- 
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3.3 SYMBIOSIS VS DYSBIOSIS 
 

Symbiosis is any type of a close and long-term biological interaction between 

two different biological organisms. As defined by the article [14] “In the 

human microbiome literature, the definition of symbiosis ranges from a 

commensalistic relationship, wherein the interaction is decidedly beneficial 

for one of the partners (the host), to mutualistic, involving beneficial 

outcomes for all organisms involved.” 

 

In the context of the microbiota, Dysbiosis is any perturbation of the normal 

content that could disrupt the symbiotic relationship between the host and 

associated microbes[15]. This can originate a disease state on its host. 

 

Exposure to aggressive factors such as stress, excessive consumption of 

alcohol, smoking, antibiotic use, unhealthy diet and even sleep deprivation 

may cause imbalance of the microbiota (e.g. increased pathogenic bacteria 

versus a decrease in commensal bacteria). This disruption can result in 

diseases[15], such as inflammatory bowel disease and other gastrointestinal 

(GI) disorders, including gastritis, peptic ulcer disease, irritable bowel 

syndrome, gastric and colon cancer and other systemic diseases such as 

obesity[7].  

 

The medical community is becoming more and more aware of the importance[16] 

of these imbalances for human health and consequently therefore having 

clinical tests designed and available to recognize Dysbiosis is crucial to 

treating the conditions outlined above. GUTHEALTH was created for this 

purpose. 

 

--- 
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3.3.1 MICROBIOME AND OBESITY 
 

Obesity is becoming worldwide epidemic given its rapid growth. Obesity and 

obesity-related metabolic disorders are characterized by specific 

alterations in the composition and function of the human gut microbiome[17]. 

Mechanistic studies have indicated that the gastrointestinal microbiota can 

influence energy consumption and generation. As a factor influencing energy 

utilization from the diet and as a factor that influences host genes that 

regulate energy expenditure and storage[18]. 
 

3.3.1.1 OBESITY AND ITS MICROBIOME INDICATORS 
 
In order to design GUTHEALTH it was important to understand the metrics 
that characterized an obese microbiota profile and how we could measure 
them. These are the global measures that are now a part a GUTHEALTH test: 
 

~ Richness is a measure for the total number of the species in a community. 

A study showed that individuals with a low bacterial richness (23% of 

the population) are characterized by more marked overall adiposity when 

compared with high bacterial richness individuals[19]. 

 

~ Evenness is the measure of uniformity of abundance between species in 

a community. One study found statistical support for decreased evenness 

amongst obese individuals[20]. 

 

~ The diversity index (Alpha diversity) takes into consideration the how 

many species are present (richness) and their overall representation 

relative to other species (evenness). Typical values are generally 

between 1.5 and 3.5 in most ecological studies, and the index is rarely 

greater than 4. Cross-sectional studies have shown lower microbiota 

diversity in obese subjects compared to lean controls[21]. 
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~ Firmicutes/Bacteroidetes ratio has been consistently demonstrated by 

numerous studies that it is increased in obese people compared to lean 

people, and tend to decrease with weight loss [18] [21]. 

 

 

--- 
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3.4 METAGENOMICS AND BIOINFORMATICS 
 

Research of the microbiota is mainly supported by NGS techniques and its 

data. The scientific field that encompasses this research is called 

Metagenomics. It is defined as the direct genetic analysis of genomes 

contained with an environmental sample[22]. 

 

This wouldn’t be possible with Bioinformatics which is an interdisciplinary 

field that develops methods and software tools for understanding biological 

data. As an interdisciplinary field of science, bioinformatics combines 

biology, computer science, information engineering, mathematics and 

statistics to analyze and interpret biological data. 

 

The data generated by metagenomics studies are both enormous and inherently 

noisy, containing fragmented data. Collecting, curating, and extracting 

useful biological information from datasets of this size represent 

significant computational challenges for researchers[22]. This is where a 

bioinformatician comes in. 
 

3.4.1 NGS AND ITS DATA 
 
The NGS instrument used by CMLGS is from Thermofisher. The Ion Personal 

Genome Machine (PGM) System combines semiconductor sequencing technology 

with natural biochemistry to directly translate chemical information into 

digital data. The system leverages direct, real-time sequencing detection, 

providing sequencing results typically in 3–7 hours[23].  The PGM can provide 

sequence data in two read-lengths: 200bp and 400bp. 

 

Concerning metagenomics PGM sequencing accelerates and simplifies its 

research by using whole-genome or targeted sequencing of the bacterial 16S 

rRNA gene. 16S rRNA sequencing was the one selected by our lab to implement 

our microbiome test. Not only 16S rRNA sequencing is the most widely accepted 

approach by the medical community but it also has a reduced cost and 
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processing time and finally, due to its wide acceptance by the medical 

community, there is easy access to reference samples that can be used as 

control samples in the test. 

 

--- 
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3.4.2 16S rRNA GENE 
 
The use of 16S rRNA gene to study metagenomics, bacterial phylogeny and 

taxonomy has been considered the workhorse of scientific community [24] and, 

more recently, of the private companies offering microbiome testing. The 

main reasons are: 

 

o They are omnipresent in all prokaryotic species, ribosomes can't 

translate mRNA without their 16S rRNA component, so all prokaryotic 

species have it[24].   

 

o Our ability to sequence it at a lower cost and to recognize bacteria 

down to the Genus/Species level[24].   

 

o The function of the 16S rRNA gene has not changed over time and is 

therefore a conserved gene which facilitates using it across studies 

and over time. This also means it is possible to construct a tree of 

life linking together all known bacteria[24]. 

 

o Finally, is one of the most well-studied and characterized genes 

used in metagenomics, the phylogenetic trees are well developed and 

taxonomic information is readily available in a variety of databases.  

 
The 16s rRNA gene is comprised of conserved and variable regions. As shown 
by figure 1. 
 

 
Figure 1 - Representation of the 16s rRNA gene. Digital Image. The Ishaq Lab. May 8 2016. 

https://sueishaqlab.org/tag/16s-rrna/ 
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The conserved regions allow primers to be designed to target all bacteria, 

but they can amplify the 16s gene through a variable sequence of bases in 

which its differences allow the identification of the organism to the 

Genus/Species level. However, it is important to note that not all regions 

of the 16s rRNA gene are equally good at differentiating between different 

taxon[25].  

 

16S rRNA DATABASES 
An important step when using the 16S rRNA gene for bacteria classification 
is having a means of comparison with agreed upon classified reads[24]. The 
main free-to-use available databases are named Greengenes, Ribossomal 
Database Project (RDP), Silva, Open Tree of life Taxonomy (OTT) and National 
Center for Biotechnology Information (NCBI)[26]. Not all available databases 
have the same information or the same level of detail as shown by figure 2. 

 

Figure 2 - Overview of 5 databases mentioned and their taxonomic classifications (table taken from 
“SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?”) 

 
--- 
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3.5 RELEVANT FILE FORMATS 
 
A file format is the layout of a file in terms of how the data within the 

file is organized. It is important to understand the concepts behind each 

format so we can replicate previous work and have our own available for 

replication in standard usable formats. I will describe the formats used in 

this report below and the reasons behind using them. 

 

SAM & BAM 
SAM (Sequence Alignment Map) is a text-based format for storing biological 

sequences aligned to a reference sequence. It is widely used for storing 

data, such as nucleotide sequences, generated by next generation sequencing 

technologies, and the standard has been broadened to include unmapped 

sequences. The binary equivalent of a SAM file is a BAM (Binary Alignment 

Map) file, which stores the same data in a compressed binary 

representation[27]. 

 

FASTQ 
This is a text-based format for storing both a biological sequence (usually 

nucleotide sequence) and its corresponding quality scores. Both the sequence 

letter and quality score are each encoded with a single ASCII character for 

brevity[28]. 

 

BIOM 
It is a Biological Observation Matrix Data. The BIOM file format is designed 

to be a general-use format for representing biological sample by observation 

contingency tables[29]. 
 

PHYLOSEQ 
It is a R object that provides a set of classes and tools to facilitate the 

import, storage, analysis, and graphical display of microbiome census data. 

Currently, phyloseq uses 4 core data classes. They are the OTU abundance 
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table (otu_table), a table of sample data (sample_data); a table of taxonomic 

descriptors (taxonomyTable) and a phylogenetic tree ("phylo"-class)[30]. 

 

JSON 
JSON (JavaScript Object Notation)[31] is a lightweight data-interchange 

format. It is easy for humans to read and write. It is easy for machines to 

parse and generate. is built on two structures: 

 

o A collection of name/value pairs. In various languages, this is 

realized as an object, record, dictionary, hash table, keyed list, or 

associative array. 

o An ordered list of values. In most languages, this is realized as 

an array, vector, list, or sequence. 

 

PNG 
PNG (Portable Network Graphics) is a raster-graphics file-format that 

supports lossless data compression[32]. 

 
 

--- 
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3.6 PROGRAMMING LANGUAGES 
 
Programming is important to automate, collect, manage, calculate, analyze 

the processing of data and information accurately. When it comes to deciding 

which programming languages used it is important to consider the field of 

work and the tools and libraries available. The discipline of Bioinformatics 

cannot be done without the use of programming languages.  In this report the 

main languages used were R and PYTHON with some minor use of BASH/SHELL 

scripts and JAVA as “wrapper” languages for the command line menus and 

processing of files in bulk. I will describe the programming languages used 

in this report below. 

 

R 
It is a language and environment for statistical computing and graphics. It 

provides a wide variety of statistical (linear and nonlinear modelling, 

classical statistical tests, time-series analysis, classification, 

clustering and others) and graphical techniques, and is highly extensible[33]. 

 

PYTHON 
It is a widely used general-purpose, high level programming language. It was 

mainly developed for emphasis on code readability, and its syntax allows 

programmers to express concepts in fewer lines of code[34]. 

 

JAVA 
It is a general-purpose, concurrent, strongly typed, class-based object-

oriented language. It is normally compiled to the bytecode instruction set 

and binary format defined in the Java Virtual Machine Specification[35]. 

 

BASH/SHELL 
A shell script is a computer program designed to be run by the Unix shell, 

a command-line interpreter. Bash (Bourne Again Shell) is a type of 

interpreter that processes shell commands. The main purpose of a BASH shell 
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is to allow users to interact effectively with the system through the command 

line[36]. 

 
 

--- 
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4. PRODUCT DEVELOPMENT 
 
In order for CMLGS to bring this test to market I had to ensure that I 
researched the available and appropriate tools, always with the focus of 
creating a product, that would generate its analysis and reporting itself 
automatically. While I mentioned four separate phases previously, each with 
their own tasks, all of them were performed in parallel of each other. This 
allowed fine tuning to be done quicker but also the manifestation of new and 
improved ideas. 
 
In this section I’ve added snippets of the scripts used and created however, 
I wasn’t able to provide all the code written as it is intellectual property 
of CMLGS. 

4.1 FINDING THE RIGHT TOOLS 
 
Considering the time constraints to take this test to market coupled with 

fact that I was the sole bioinformatician available I had to simplify the 

development process as much as possible while making sure I maintained the 

quality of the product. It was crucial for the timely success of this project 

that I used the right tools. 

 

My main requirements for choosing bioinformatics tools were: 1) Being user-

friendly and easy to implement; 2) A proven track record amongst the 

bioinformatician community; 3) Easy to maintain; 4) And if possible coded in 

a language that required the least amount of installation of script 

dependencies as possible. 

 

BAM FILE CONVERSION 
The raw sequencing data from PGM instrument is in BAM format. This meant 

converting these into a more usable format. In this case I chose the FASTQ 

format because it is commonly used by other tools and had quality metrics 

that could be used to perform quality control. 
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I tested Picard[37] and Bamtofastq from BEDTOOLS[38]. Both met my requirements 

but because Picard was based on JAVA I decided to use Bamtofastq. It meant 

using less dependencies. This is a tool from BEDTOOLS which is a fast, 

flexible toolset for a wide-range of genomics analysis tasks. BAMTOFASTQ is 

a conversion utility for extracting FASTQ records from sequence alignments 

in BAM format. Command invocation as shown in figure 3.  

 
 
 
 
 
 
 

FASTQ QUALITY CONTROL 
High-throughput sequencing means a probability of sequencing errors and 

chimeras in the process. This means performing quality control on the its 

data.  

 
I tested Trimmomatic[39], Cudadapt[40] and Fastq_Quality_Filter. All tools met 

my requirements and I chose Fastq_Quality_Filter because I had used it before 

and it worked quickly and efficiently. This is a tool from the FASTX-

TOOLKIT[41] which is a collection of command line tools for Short-Reads 

FASTA/FASTQ files preprocessing. FASTQ Quality Filter removes low-quality 

sequences from FASTQ files. Command invocation as shown in figure 4. 

 

 
 
 
 
 
 
 
 
 

$ fastq_quality_filter [-q N] [-p N] [-i INFILE] [-o OUTFILE] 
 
    [-q N]       = Minimum quality score to keep. 
    [-p N]       = Minimum percent of bases that must have [-q] quality. 
    [-i INFILE]  = FASTA/Q input file. default is STDIN. 
    [-o OUTFILE] = FASTA/Q output file. default is STDOUT. 

Figure 4 - FASTQ_QUALITY_TRIMMER USAGE. NOTE: OPTIONS DISPLAYED ARE THE ONES USED ON THIS 
REPORT. 

$ bedtools bamtofastq [OPTIONS] -i $BAM -fq $FASTQ 
 
    [-i]       = BAM input file. 
    [-fq]      = FASTQ output file. 
 

Figure 3 - BAMTOFASTQ STANDARD USAGE. NOTE: OPTIONS 
DISPLAYED ARE THE ONES USED ON THIS REPORT. 
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CONVERSION OF SINGLE TO PAIRED FASTQ FORMAT 
The PGM instrument sequences in both directions (3’ & 5’). This meant 

converting the single raw read file into paired format. 

 

I tested using a set of bash commands and a tool called Reformat[42]. I chose 

the Reformat tool because it was more commonly used by the bioinformatics 

community. It is a tool from BBTOOLS which is a suite of fast, multithreaded 

bioinformatics tools designed for analysis of DNA and RNA sequence data. 

 
Reformat is designed for generic streaming read-processing tasks that have 

low memory or computational demands. In this case it was used to separate 

paired reads. Command invocation as shown in figure 5. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

$ reformat.sh in=reads.fq out1=read1.fq out2=read2.fq 
 
[in]       = FASTA/Q input file. 
[out1]     = FASTA/Q output file with forward reads. 
[out2]     = FASTA/Q output file with reverse reads. 

Figure 5 - REFORMAT USAGE; NOTE: OPTIONS DISPLAYED ARE THE ONES 
USED ON THIS REPORT. 
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METAGENOMIC CLASSIFICATION 
Metagenomic classification tools match sequences against a database of 

microbial genomes to identify the taxon of each sequence. There are two 

different approaches to this problem, clustering-first or assignment first 

classification[43]. Approaches outlined in figure 6. 

 

 
Figure 6 - DISTINCTIONS BETWEEN CLUSTERING-FIRST AND ASSIGNMENT-FIRST APPROACHES. (image taken from 

“Assessment of Common and Emerging Bioinformatics Pipelines for Targeted Metagenomics”) 

 
Each approach has its own merits and issues. OTU-clustering means that reads 

are gathered into OTUs (Operation Taxonomic Unit) based on their sequence 

similarities. This allows for the discrimination of unclassified reads but 

can also be consuming on the available resources such as time, CPU usage or 

RAM depending on the amount of input data[43]. Assignment-first was faster and 

sometimes lighter on resources but could be more prone to chimera errors.  

 

Ultimately I decided that assignment-first was the viable choice more 

specifically Kraken2, for time and resource constraints but also because the 
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product involved knowing beforehand the bacteria involved so I didn’t need 

a de-novo approach. 

 
Kraken2[44] tool it is a taxonomic sequence classifier that assigns taxonomic 

labels to DNA sequences. Kraken examines the k-mers within a query sequence 

and uses the information within those k-mers to query a database. That 

database maps k-mers to the lowest common ancestor (LCA) of all genomes known 

to contain a given k-mer. DB build command invocation as shown in figure 7 

and Classification command invocation as shown in figure 8. 

 

For targeted 16S sequencing projects Kraken2 provides support for building 

databases from three publicly available 16S databases, Greengenes, RDP and 

SILVA. 

 
Kraken 2's standard sample report format is tab-delimited with one line per 

taxon. The fields of the output, from left-to-right, are as follows: 

 

1. Percentage of fragments covered by the clade rooted at this taxon. 

2. Number of fragments covered by the clade rooted at this taxon. 

3. Number of fragments assigned directly to this taxon. 

4. A rank code, indicating (U)nclassified, (R)oot, (D)omain, 

(K)ingdom, (P)hylum, (C)lass, (O)rder, (F)amily, (G)enus, or (S)pecies. 

5. NCBI taxonomic ID number. 

6. Indented scientific name. 

 
 
 
 
 
 
 
 
 
 
 

$ kraken2-build --db $DBNAME --special $TYPE 
 
    [--db]       = Name of the DB to be created. 
    [--special]  = Type of DB to be created (greengenes, rdp, silva) 

Figure 7 - KRAKEN2 BUILD USAGE FOR 16S DB TYPES 
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METAGENOMIC ABUNDANCE ESTIMATION 
In the creation of this product it was also crucial to get the correct 
abundance information for each taxa. Therefore, and because I chose to use 
Kraken2, I decided to use BRACKEN[45] (Bayesian Reestimation of Abundance with 
KrakEN). 
It is a highly accurate statistical method that computes the abundance of 
species in DNA sequences from a metagenomics sample. It uses the taxonomy 
labels assigned by Kraken to estimate the number of reads originating from 
each species present in a sample. It produces accurate species and genus-
level abundance estimates even when a sample contains two or more near-
identical species. Build command invocation as shown in figure 9 and 
Classification command invocation as shown in figure 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 

$ kraken2 --threads $THREADS --db $DBNAME --paired R1.fastq R2.fastq --
confidence NUM --report FILE.report  
 
    [--db]        = Name of the DB to be used. 
    [--threads]   = NUM switch to use multiple threads. 
    [--confidence]   = Confidence threshold used [0-1]. 
    [--paired]    = NUM switch to use multiple threads. 
    [--report]    = Name of the report file created. 
 

Figure 8 - KRAKEN2 USAGE. NOTE: OPTIONS DISPLAYED ARE THE ONES USED IN THIS REPORT. 

$ bracken-build -d $DBNAME -t $THREADS -k $KMER_LEN -l $READ_LEN 
 
    [-d]    = Name of the KRAKEN2 DB to be used. 
    [-t]    = NUM switch to use multiple threads. 
    [-k]    = Length of kmer used to build the database. [default: 35] 
    [-l]    = Ideal length of reads in your sample. 

Figure 9 – BRACKEN BUILD USAGE FOR KRAKEN2 
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CONVERSION FROM KRAKEN TO PHYLOSEQ 
Due to the nature of the report I had to extract statistical metrics from 

the data, both from sample and reference populations. I decided to use the 

R object Phyloseq. This would allow me to use ready functions that were peer 

tested. For this I had to convert the report output from Kraken2+Bracken to 

a biom format so it could be imported as a Phyloseq format. This was also 

helpful considering that I could store all population kraken report 

observations in one single biom file which would help the speed of the 

pipeline. 

 

For this step the KRAKEN-BIOM[46] algorithm was implemented. This takes as 

input, one or more files output from the kraken-report tool. Each file is 

parsed and the counts for each OTU are recorded, along with database ID (e.g. 

NCBI), and lineage. The extracted data are then stored in a BIOM table where 

each count is linked to the Sample and OTU it belongs to. Sample IDs are 

extracted from the input filenames. Command invocation as shown in figure 

11. 
 

 
 

 
 
 

$ bracken -d $DBNAME -t $THREADS -i $KRAKEN2.report -r $NUM -o 
$NAME.bracken 
 
    [-d]    = Name of the KRAKEN2 DB to be used. 
    [-t]    = NUM switch to use multiple threads. 
    [-i]    = Input KRAKEN2 report 
    [-r]    = Ideal length of reads in your sample. 
    [-o]    = Name of the output file to be generated. 
 

Figure 10 - BRACKEN USAGE ; NOTE: OPTIONS DISPLAYED ARE THE ONES USED IN 
THIS REPORT. 

$ kraken-biom $KRAKEN.report -o $SAMPLE.biom --fmt hdf5 
 
    [-o]  = Name of output biom file used. 
    [-fmt] = format in which the biom file coded. [hdf5, json,tsv] 

Figure 11 - KRAKEN-BIOM USAGE 
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4.2 PHASE 1 
 

In order to identify the bacteria most interesting for medical intervention 
through our test we have established the partnership between CMLGS and NOVA 
previously described. This team work resulted in the compilation of a list 
of bacteria, presented in the table 1. 
 

Table 1 -  TABLE WITH CHOSEN BACTERIA 

NAME TAXONOMIC RANK POSSIBLY COMMENSAL / PATHOGENIC 
Bacteroides Genus Possibly Commensal 
Bilophila Genus Possibly Commensal 
Blautia Genus Possibly Commensal 

Butyrivibrio Genus Possibly Commensal 
Lactobacillus Genus Possibly Commensal 
Prevotella Genus Possibly Commensal 
Roseburia Genus Possibly Commensal 

Ruminococcus Genus Possibly Commensal 
Escherichia coli Species Possibly Commensal 

Akkermansia muciniphila Species Possibly Commensal 
Salmonella enterica Species Pathogenic 

Campylobacter Genus Pathogenic 
Clostridium difficile Species Pathogenic 

Shigella Genus Pathogenic 
Vibrio Cholerae Species Pathogenic 

 

Due to the nature of the report I had to find these bacteria in our samples 

but also compare its abundance with one or more populations.  

 

As a result of these requirements the task of finding the right classification 

database was a priority and considering that the lowest taxonomic rank 

necessary was Species I tested Greengenes and NCBI.  

 

To perform these tests, I used a control sample from ZymoBIOMICS Microbial 

Community DNA Standard[47]. This enabled me to test the effectiveness and 

accuracy of each database, because I had access to the composition and 

abundance of bacteria from this control sample. Neither of the tested 

databases proved to be satisfactory.  
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During this testing phase I encountered some concerns with these databases: 

1) Greengenes (version dated 05/13) lacked the ability to track Escherichia 

coli; 2) NCBI meant that I had to create my own database of 16s rRNA sequences 

and I needed to use a peer curated database. 

 

I chose to update Greengenes to a later version (dated 08/13) and adding 

more high quality sequences to that database. I focused on adding sequences 

from NCBI from the list of bacteria mentioned earlier. 

 

To create the classification database, I used the pipeline outlined in the 
diagram from figure 12: 
 

 
Figure 12 - GUTHEALTH DB CREATION PIPELINE 

 
 

(1) Downloaded the necessary files from GG and NCBI from: 
 

~ ftp://greengenes.microbio.me/greengenes_release/gg_13_5/ 

~ https://www.ncbi.nlm.nih.gov/nuccore 
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(2) Used SED (stream editor) commands to perform text transformations in 

order to merge all the data from these sources. This was necessary 

because the NCBI taxonomic ranks didn’t follow the same format as the 

GG.  

 
(3) Kraken2 requires 2 files to create a database: 1) One fasta compressed 

file with the taxonomic IDs and sequences; 2) A text file with the 

taxonomic IDs and names.  

 
I updated the GG database creation PERL script of Kraken2 to accept my 

local versions of “gg.fasta.gz” and “gg_taxonomy.txt.gz”, instead of 

procuring these files online and lastly created the classification 

database by using the build command with Kraken2 as shown in figure 9. 

I called this database GUTHEALTH. Snippet of Kraken2 perl script as 

shown in figure 13. 

 

 
Figure 13 - SNIPPET OF KRAKEN CREATE DB GUTHEALTH SCRIPT 
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4.3 PHASE 2 
 

This phase included the discovery and usage of curated metagenomics data to 

be used as our reference population. From this data it was possible to 

extract population related metrics from, and be able to use those metrics as 

comparison with the sample in our test. I decided to use samples from the 

American Gut Project[48] (AG). The decision to use these samples was based on 

the following: 

~ Previous knowledge of working with this database as part of the 

Bioinformatics Laboratory project. 

~ The fact that its sequencing data was the same as the one chosen by 

this project, the 16s rRNA gene. 

~ The availability of the data. It is located in a free repository 

https://www.ebi.ac.uk/ena under the project code PRJEB11419. 

~ Its metadata was abundant which allowed me to fine tune and filter the 

samples based on strict rules. 
 

To create the population database, I used the pipeline outlined in the 

diagram in figure 14: 
 

 
Figure 14 - POPULATION BIOM FILE PIPELINE 
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(1) I downloaded each sample individually using a python script that I 

designed called import_AG_data.py. This script uses the AG metadata to 

extract each sample id and then it would download both the sample metadata 

and its fastq file. This script was created during the Bioinformatics 

Laboratory project and adapted to this one. It uses the PYTHON libraries 

present in table 2. 
 

 
The project’s metadata was extensive so I was able to filter and separate 

samples. Since the main objective of this test is obesity treatment I 

decided to use the following filters and created the populations described 

in table 3. 

 
Table 3 - *ALL SAMPLES THAT HAD DISEASES SUCH AS IBS, IBD, DIABETES WERE FILTERED OUT 

POPULATION NAME FILTERS USED 
NORMAL 18.5 < BMI values < 24.9 

OVERWEIGHT 25 < BMI values < 29.9 
OBESE 30 < BMI values 

UNDERWEIGHT 18.5 > BMI values 
 
(2) Once I had all samples files downloaded I proceed to perform quality 

control using fastq_quality_filter as described in figure 4. 

 

(3) Using the fastq filtered files after step number 2 I classified each 

one using Kraken2 as described in figure 8. 

 

(4) Having each individual kraken report I proceed to use Bracken as 

described in figure 10. 

 
(5) And lastly I used a python script that I designed called 

bracken_to_biom.py to convert each bracken report individually to a biom 

LIBRARY NAME FUNCTION 
REQUESTS Ability To Perform HTTP Requests 

PANDAS 
High-Performance, Easy-To-Use Data Structures 
And Data Analysis Tools 

Table 2 - TABLE WITH PYTHON LIBRARIES USED IN IMPORT_AG_DATA.PY 
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format and append each to a population.biom file. A snippet of the script 

in present in figure 15. It uses the PYTHON libraries as shown in table 

4. 
 

 
 

 
Figure 15 - SNIPPET OF BRACKEN_TO_BIOM SCRIPT 

 
--- 
 

 

Table 4 - TABLE WITH THE PYTHON LIBRARIES OF BRACKEN_TO_BIOM.PY 

LIBRARY NAME FUNCTION 

ARGPARSE 
Makes It Easy To Write User-Friendly Command-Line 
Interfaces. 

SUBPROCESS 
Gives The Developer The Ability To Start Processes 
Or Programs From A Python Script 

BIOM Provides Rich Table Objects To Support Use Of The 
BIOM File Format 

QIIME 
Collection Of Python Code And Scripts For 
Performing Microbiome Analysis. In this case I used 
a function called write_biom_table 
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4.4 PHASE 3 
 

This phase was used to create our own analysis pipeline and automatize it. 

This would allow us to automatically generate the metrics and charts to be 

used according to an established design of the test into a pdf file. This 

meant integrating all the scripts into one continuous and uninterrupted 

pipeline that took writing more than 2500 lines of code in BASH scripting, 

PYTHON AND R. Diagram outlined in figure 16. 

 

 
Figure 16 - REPORT CREATION PIPELINE 
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(1) First I need to extract the file from the Ion Torrent Servers. At the 

moment this is the only step that does require human action. It requires 

access to the PGM Ion Torrent interface and click on the BAM file name. 

Example shown in figure 17. 

 

 
Figure 17 - ION TORRENT INTERFACE 

 
 
(2) (3) Conversion of the BAM file to FASTQ format using BAMTOFAST and into 

its forward and reverse reads counterparts. Snippet of the script as 

shown in figure 18. 

 

 
Figure 18 - SNIPPET OF BAM TO FASTQ & ONE TO TWO FASTQ SCRIPT 

 
 

(3) Perform quality control on both files. Snippet of the script as shown in 

figure 19. 

 

 
Figure 19 - – SNIPPET OF QUALITY CONTROL SCRIPT 
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(4) (6) Classify the sample using Kraken2 + Bracken combination. Snippet of 

the script as shown in figure 20. 

 

 
Figure 20 – SNIPPET OF CLASSIFICATION SCRIPT 

(5)  Convert the kraken report to biom format using KRAKEN-BIOM. Snippet of 

the script as shown in figure 21. 

 

 
Figure 21 - SNIPPET OF BIOM CONVERSION SCRIPT 

(7)  To extract the population and sample metrics from the population and 
sample .biom files I chose to use R and created a script called 

meta_metrics_2.R. It generates all values and graphs to be used in the 

pdf report. Snippet of the script a shown in figure 22. 

 
Figure 22 - SNIPPET OF META METRICS CREATION SCRIPT 
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It uses the R libraries shown in table 5. 

 
Table 5 - TABLE WITH THE PYTHON LIBRARIES OF META_METRICS.R 

LIBRARY NAME FUNCTION 
GETOPT Parsing Unix Command Line Options 

BIOMFORMAT Interfacing With The BIOM Format 

PHYLOSEQ 
Set Of Classes And Tools To Facilitate The Import, 
Storage, Analysis, And Graphical Display Of Microbiome 
Census Data 

APE 
Functions For Reading, Writing, Plotting, And 
Manipulating Phylogenetic Trees, Analyses Of 
Comparative Data In A Phylogenetic Framework 

DPLYR Grammar Of Data Manipulation 

GGALT 
New Geometries, Coordinate Systems, Statistical 
Transformations, Scales And Fonts For 'Ggplot2' 

TIDYVERSE Meant To Load Ggplot2 

EBMC Ensemble-Based Methods For Class Imbalance Problem 
(For Machine Learning) 

CARET 
Set Of Functions That Attempt To Streamline The 
Process For Creating Predictive Models. 

COWPLOT 
Add-On To Ggplot And  Functions That Make It Easy To 
Annotate Plots And Or Mix Plots With Images. 

GRIDEXTRA Arrange Multiple Graphs In A Grid-Like Format 
MAGICK Open-Source Image Processing 
GGIMAGE Ggplot2 Equivalent Of Image 

RETICULATE 
Comprehensive Set Of Tools For Interoperability 
Between Python And R 

METACODER Tools For Parsing, Manipulating, And Graphing 
Taxonomic Abundance Data 

JSONLITE JSON Parser 
 
The data created is exported in JSON format and its related graphs are in 
PNG format. 
 
(9) To create the PDF report I resorted in creating a Python script that I 

called meta_report.py. Snippet of the script as shown in figure 23. 
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Figure 23 - SNIPPET OF META REPORT CREATION SCRIPT 

It uses the PYTHON libraries in table 6: 

 
Table 6 - TABLE WITH THE PYTHON LIBRARIES OF META_REPORT.PY 

LIBRARY NAME FUNCTION 

ARGPARSE 
Makes It Easy To Write User-Friendly Command-Line 
Interfaces. 

PANDAS 
Easy-To-Use Data Structures And Data Analysis 
Tools 

JSON JSON Encoder And Decoder 

REPORTLAB 
An Open Source Python Library For Generating Pdfs 
And Graphics. 

 
--- 
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4.5 PHASE 4 
This phase was crucial as our microbiome test had to be able to correctly 

profile a sample and assign it to its specific group (Underweight, Normal, 

Overweight or Obese).  

 

This proved to be elusive, given that one or more individual factors might 

point out to one group while other factors might favor another group. To 

mitigate this, I researched Machine Learning algorithms for classification, 

and based my decision on one article evaluation of these methods[49] and a 

pipeline already created for microbiome data[50].  

 

Considering the time constraints and available pipelines, I decided to use 

a RandomForest algorithm that took into account all abundances and created 

a predictive model. It had an error rate of 29% and it was implemented. 

 

However, this error rate of 29% meant that there was room for improvement 

and during my research on Machine Learning algorithms I learned about dealing 

with unbalanced datasets[51]. 

 

The population datasets used were uneven in size. (i.e, the group Normal has 

over 1400 samples whereas the group Obese has a little over 130 samples.) 

 

I was able to eliminate the bias that came with unbalanced datasets by 

implementing an oversampling technique called SMOTE (Synthetic Minority Over-

Sampling Technique). I created a new RandomForrest prediction algorithm that 

included all abundances and also the metrics for Diversity, Richness and 

Evenness. This new algorithm had over 97% accuracy rate for all population 

types.  

 

For this I used the R libraries called ebmc[52] (Ensemble-Based Methods for 

Class Imbalance Problem) and caret[53] (Classification and Regression 

Training). This algorithm is present in the meta_metrics_2.R script and it 

is implemented. 
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5. DISCUSSION 
 

During the development and implementation of our test, we came across several 

issues that for now could not be solved with our currently implemented 

bioinformatics methods. While such issues were to be expected and do not 

represent a major drawback and thus allowed the product to be commercialized, 

it will soon require our attention and further implementations to solve them. 

These issues are: 

 
 

ESCHERICHIA COLI 
We noticed that E-coli was not present in the analyzed microbiomes despite 

the fact that, even being present in low abundance, it is a regular organism 

that lives in the human gut. After a deep investigation we found that the 

current usage of 16S rRNA gene sequencing methods to profile the microbiome 

can lead to underrepresentation, when doing a metagenomics sequencing run. 

This meant removing this taxon from the reported list until we can sequence 

it by using alternative methods. 

 
 

SHIGELLA OR NOT SHIGELLA 
We also came across 2 samples that were over representing Shigella. Taking 

a closer look at the classified data, and after using BLASTN of the sequences, 

I discovered that the sequences were being mislabeled. Deleting these 

mislabeled IDs solved this particular problem. 
 

 

GRAPH LITERACY 
During our interactions with potential or actual customers we became aware 

that understanding the data behind a graph might not always be present with 

our customers. We felt the need to change the way data was presented. We 

changed from the representation in figure 24 to figure 25. 
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FIGURE 24 - VERSION 1 OF RICHNESS REPRESENTATION OF PHYLUM AND CLASS RANKS 

 

 
FIGURE 25 - VERSION 2 OF RICHNESS REPRESENTATION OF PHYLUM AND CLASS RANKS 

 
 

--- 
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6. RESULTS 
 

As a result of this project and of the work carried out by our laboratory, 
the microbiome test is now a finished product. It has 2 main groups (global 
and individual metrics) and currently it has 4 sections. 
 
Its main formula is metrics comparison between the sample, its assigned group 
(by our classification algorithm) and the Normal reference population. (NOTE. 
If the assigned group is Normal, then the second reference group will be 
Obese) 
 
The sections are: 
 

SUMMARY 
In this section we characterize the main global metrics, we identify any 
individual metric that isn’t within normal parameters and, if we have found 
any pathogenic bacteria in an individual’s sample we flag it. 
 

GLOBAL 
In this section we expand on the global metrics. These are Microbiome 
Diversity, Richness, Firmicutes/Bacteroidetes Ratio and a global 
Phylogenetic tree. 
 

INDIVIDUAL 
 

In this section we provide insights on the individual bacteria previously 
chosen for this test and its abundance within the sample. 
 

BACTERIA INVENTORY 
In this section we provide a table listing all bacteria found in the sample 
as well as its abundance. 
 
I have attached a sample GUTHEALTH report in the appendix section of this 
report. 

--- 
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7. CONCLUSIONS 
 
The main objective of creating a market-ready sequencing-based clinical 
microbiome test, related to obesity without the need of human intervention 
in the processes of analysis and reporting was achieved. The product is now 
being commercialized by CMLGS actively.  
 
I have found the field of Metagenomics and Microbiota to be flourishing with 
opportunities of research making Bioinformatics indispensable and, by 
association, the role of the bioinformatician.    
 

My role in this project evolved from a bioinformatics developer and intern 
to product manager where I’m able to provide insights based on the data. 
 
I also want to point out that I understood the importance of being amongst 
a great team of professionals. A bioinformatician’s work does not depend 
only on himself but also on the quality of the data and, by association, on 
the quality of the team around him.  
 
Lastly, reflecting on my own progress during this project, I can safely say 
that today I’m much a more accomplished programmer, capable of implementing 
my own bioinformatics pipelines, and that my understanding of the role of a 
Bioinformatician and the field of Metagenomics is much greater.  
 
Since this is a field that I wish to pursuit, having the opportunity to work 
on this project meant a great deal to me. 
 

 
 

--- 
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